

July 20 from 2 pm – 4 pm ET:

Mechanical Recycling

Improvements in mechanical recycling continue to be made for the vinyl industry. Speakers will discuss additives to bolster recycled material performance and quality, and advanced sorting technology to remove contaminants and increase the yield of recycled material.

Advanced Solutions in Vinyl Recycling with Titanate Catalysts/Coupling Agents, *Salvatore Monte, Kenrich Petrochemicals*

Salvatore J. Monte – Kenrich Petrochemicals, Inc.

July 20, 2021 – 2:00-4:00pm

PLASTICS Voting Member & Recycle Sub-Committee

PPA Board of Governors – Newsletter Chair

Plastics Pioneers Association

450- ACS CAS Abstracted Works by S.J. Monte

Salvatore J. Monte, President

32-US Patents Filed Worldwide

Classified TOP SECRET for DOD IMEM Program

Presentation Outline – Key Points

- Titanium/Aluminum coupling and catalysis applications are demonstrated in mechanical recycling.
- Ziegler, Natta & Kaminisky used Titanium and Aluminum catalysts to produce Addition Polymers – Vinyl is an Addition polymer;
- Titanate catalysts produce Condensation Polymers;
- Heteroatom Titanates couple fillers and catalyze Polymers;
- Mercuric Chloride and Palladium catalysts convert monomer to PVC polymer. Heteroatom Titanates REPOLYMERIZE PVC polymer.
- Monte uses Ti/AI in powder/pellet form to recycle PVC/Polymer compounds in the extruder melt.

Titanium and Aluminum Additive Chemistry

The Nobel Prize in Chemistry 1963

rize share: 1 Prize share 1/3

- If Ziegler, Natta & Kaminisky used Titanium & Aluminum catalysts to produce Addition Polymers; What if we used Ti & Al
- If Titanate catalysts are used to produce **Condensation Polymers;**
- If heteroatom Titanate coupling agents compatibilize Fillers with Polymers;

as Catalysts to Recycle more efficiently?

 Why not use Titanate and Aluminum as a catalyst and coupling agent for compatibilizing the Fillers and **Polymers (both Addition and Condensation) used** in the Plastic to be Recycled.

Titanium and Aluminum Additive Chemistry

The Nobel Prize in Chemistry 1963

Giulio Natta Prize share: 1/2

rl Ziegler ize share: 1/2

German Karl Ziegler, for his discovery of first titanium-based catalysts, and

Ziegler–Natta catalysts have been used in the commercial manufacture of various polyolefins since 1956.

 Ziegler showed a combination of TiCl₄ and Al(C₂H₅)₂Cl useful for the production of polyethylene.

- Natta used crystalline α-TiCl₃ in combination with Al(C₂H₅)₃ to produce the first isotactic polypropylene.
- Kaminsky discovered that titanocene and related complexes emulated some aspects of these <u>Ziegler-Natta catalysts</u> but with low activity. He subsequently found that high activity could be achieved upon activation of these metallocenes with <u>methylaluminoxane</u> (MAO) –[O–AI(CH3)]n).

Titanium and Aluminum Additive Chemistry

Monte uses Neoalkoxy Titanate in combination with Al₂SIO₅ mixed metal catalyst in Powder & Pellet forms for In Situ Macromolecular Repolymerization and Copolymerization in the melt – i.e. Polymer Compatibilization... AND ... The Neoalkoxy Titanate proton coordinates with inorganic fillers and organic particulates to couple/compatibilize the dissimilar interfaces at the nano-atomic level reducing the need for expensive sorting of materials in Recycled Plastics.

Kamininsky Titanocene – Monte Titanate

New Titanium and Aluminum Additive Chemistry

Introducing Titanium & Aluminum Additive Chemistry

This is The Titanium Catalyst Portion

Introducing Titanium & Aluminum Additive Chemistry

Ken-React® CAPS® KPR[®] 12/LV

Copyright ©2021 Kenrich Petrochemicals, Inc.®. All rights reserved. The Kenrich molecule, Kenrich® name, and all Kenrich Petrochemicals, Inc.'s® products denoted with a ® or 1th are trademarks of Kenrich Petrochemicals, Inc. ®.

SAFETY DATA SHEE

Monte uses Ti/AI in powder/pellet form to recycle PVC/Polymer compounds in the extruder melt.

Titanium/Aluminum Filler Coupling & Polymer Catalysis Additive for Mechanical Recycling of Polymers #1 to #7

PDS K	ELENRICHE HIGALS, INC.	Ken
P.O Tel: 201-82 Email: <u>kenrea</u>	. Box 32 - Bayonne, NJ 07002-0032 USA 3-0000 - Tol: Beck KUNRICH - Fax: 201-822-0691 std@klennich.com : Web Site: <u>www.klennich.com</u>	(and the second
	PRODUCT DATA SHEET	
Ken-React [®] CA	PS [®] KPR [®] 12/LV - Coupling Agent PelletS	
COMPOSITION OF BLEND:	Ken-React ¹ UCA ¹ 12 (CA5 # 110438-25-0) Ken-React ⁸ UZ ⁰ 01 (CA5 # 11092,54-6) Silicon Dioxide (CA5 # 1122,26-00-8) Pumice (CA5 # 1332,09-8) LDPF (CA5 # 2532,09-8)	
CHEMICAL DESCRIPTION: of Ken-React [*] LICA [*] 12:	neopentyl(diallyl)oxy. tri(dioctyl)phosphato titanate (Titanium IV 2.2 (bis 2-propenolatomethyl)butanolato	
of Ken-React® NZ® 01:	phosphato-0) neopenty(diality()oxy, trineodecanoyl zirconate (Zirconium IV 2.2 (bis 2-propenolatomethy()butanolato,	and the second
CHEMICAL STRUCTURE OF TIT	ANATE and ZIRCONATE:	1000
α ₁ =0=-04004 αιρη ε αιη 5 π (π ακ ₀ =0=-04004	$ \left(\begin{array}{c} \alpha_{1} \\ \alpha_{2} \\ \alpha_{3} \\ \alpha_{4} \\ \alpha_{5} \\ \alpha_{$	3
TYPICAL PROPERTIES OF LIQUI	ID PORTION:	10 m m
Physical Form	Liquid	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Color – Descriptive	80-Orange	and the second se
Gardner	4-8	1 - 1 - 1 - 1
Viscosity, cps @ 25*C (77*F)	4000 - 8000	
Specific Gravity (2) 16°C (60°F) Flash Point, #F (TCC)	>141	and the second second
Initial Boiling Point, *F, ASTM	200	10 Mar 10 Mar
pH (saturated solution)	5.3	States and a second
entration and the state and	ene, mineral oil, DOP, DIDP, aromatic plasticizer, and MEK. 1%	and the second se
Solubility 5% in xylene, tolu in isopropyl alcohol. Insoluble	in H ₂ O.	
Solubility 5% in xylene, tolu in isopropyl alcohol. Insoluble KEN_REACTE CAPS" KPR 12/11	E in H2O.	100
Solubility 5% in xylene, tolu- in isopropyl alcohol. Insoluble KEN-REACT® CAPS KPR 12/L1 Physical Form	r in H ₂ O. VROPERTES: Solid Pellet or Chip	31
Solubility 5% in xylene, tolu in isopropyl alcohol. Insoluble KEN-REACT* CAPS* KPR* 12/L/ Physical Form Activity	r in H ₂ O. VROPERTIES: Solid Pellet or Chip 20% Keen React [®] UCA [®] 12 Titanate	
Solubility 5% in xylene, tolu in isopropyl alcohol. Insoluble KEN-REACT* CAPS* KPR* 12/LV Physical Form Activity Color, descriptive	in H ₂ O. VPOPERTES: Sole Poler or Ohjo 20% Kon Reader ULA* 12 Titanate Off-uhite/beige Pellets	
Solubility 5% in xylene, tolu in isopropyl alcohol. Insoluble KEN-REACT* CAPS* KPR* 12/LV Physical Form Activity Color, descriptive POS CAPF* KPR* 12/LV Ferrary 28, 2016	is HQD. Sold Protect or Origo 20% Keen Sender' UKA' 12 Thanate Off-ashar/budge Pedets	

NOT KENDLED Copyright ©2021 Kenrich Petrochemicals, Inc.®. All rights reserved. The Kenrich molecule. Kenrich® name, and all Kenrich Petrochemicals, Inc.'s® products denoted with a ® or [™] are trademarks of Kenrich Petrochemicals, Inc. ®. Pellet masterbatches of (CAPS[®] KPR[®]) neoalkoxy titanate/mixed metal catalyst are added at the extruder hopper like a color concentrate – or Compounders use a (CAPOW®) powder masterbatch

Reactor **Titanocene Polymerization – Ethylene Monomer**

to

Extruder Titanate Repolymerization – PVC & Ethylene Polymers

Titanate: Recycle to **Re-Polymer**

ECENERCE Copyright ©2021 Kenrich Petrochemicals, Inc.®. All rights reserved. The Kenrich molecule, Kenrich® name, and all Kenrich Petrochemicals, Inc.'s® products denoted with a ® or ™ are trademarks of Kenrich Petrochemicals, Inc. ®.

Evolution of Subject Ti-Al Nano-Technology

SIX FUNCTIONS

Organometallic Catalyst

SIX FUNCTIONS

Ken-React[®] LICA 12 Titanate

Problem Solving Takeaways From This Presentation - Coupling

(1) **Couple** *in situ* via proton coordination to all fillers, pigments and organics– from CaCO3 to Carbon to AZO:

ECENTRIC Copyright ©2021 Kenrich Petrochemicals, Inc.®. All rights reserved. The Kenrich molecule, Kenrich® name, and all Kenrich Petrochemicals, Inc.'s® products denoted with a ® or 11 are trademarks of Kenrich Petrochemicals, Inc. ®.

Problem Solving Takeaways From This Presentation - Coupling

(1) **Couple** *in situ* via proton coordination to all fillers, pigments and organics– from CaCO3 to Carbon to AZO:

- No hydrolysis as with Silanes No pretreatment.
- Functionalize Increase electron and heat transfer.
- Nano-Titanium Phosphatize for Flame Retardance.
- Use polymer melt (or plasticizer) as coupling medium.
- Filler viscosity reduction shift in pigment/binder CPVC.

Problem Solving Takeaways From This Presentation - Coupling

(1) **Couple** *in situ* via proton coordination to all fillers, pigments and organics– from CaCO3 to Carbon to AZO:

- No hydrolysis as with Silanes No pretreatment.
- Functionalize Increase electron and heat transfer.
- Nano-Titanium Phosphatize for Flame Retardance.
- Use polymer melt (or plasticizer) as coupling medium.
- Filler viscosity reduction shift in pigment/binder CPVC.

• Nano-Titanium Phosphatize for Flame Retardance.

Advanced Solutions in Vinyl Recycling with Titanate Catalysts/Coupling Agents

PROBLEM SOLVING RECYCLE IS A COMPLEX MATERIALS CHALLENGE

Salvatore J. Monte - Kenrich Petrochemicals, Inc.

July 20, 2021 – 2:00-4:00pm

KENRICH KENRICH

Insensitive Munitions & Energetic Materials (IMEM) Technology Symposium April 7-8, 2021 Virtual Conference

PROBLEM SOLVING INSENSITIVE MUNITIONS IS A COMPLEX MATERIALS CHALLENGE

Copyright 02021 Kenrich Petroshemicals. In: 9 All rights reserved. The Kenrich molecule. Kenrich@same. and all Kenrich Petroshemicals.

Advanced Insensitive Munitions & Energetic Materials Concepts Using 1.5-Nanometer Titanates & Zirconates

Salvatore J. Monte

sjmonte@4kenrich.com · www.4kenrich.com

Distribution Statement A, Approved for public release. Distribution Unlimite

SIX FUNCTIONS **Problem Solving Takeaways** Function 1 Function 4 -Coupling Polarity **Function 2** From This Presentation – Function 5 Catalysis Thermoset Function 3 Function 6 Phosphatization Hybridization **Coupling – Catalysis – Phosphatization** (1) Couple in situ via proton coordination to all fillers, pigments and organics- from CaCO3 to Carbon to AZO: Nano-Titanium Phosphatize for Flame Retardance.

IM Problem Solved: Unsustainable unplanned detonation of rockets and explosives causing great loss of life and valuable equipment.

I became aware of the Insensitive Munitions Program & LOVA in early 1980

Just as in RECYCLE, to solve the Unsustainable problem of unplanned

detonation – I applied the lessons learned dealing with similar or same materials in PVC & polymer composites

19-PERF LOVA Propellant

- 85% RDX Nitramine
 - 15% CAB Plastic
 - 0.5% LICA 12

1980 – Monte theorizes:

- 1. We can make AZO nitramine blowing agent more explosive for PVC pool floats.
- 2. We can create nano-titanium intumescence
 - on any interface for flame retardance.
- 3. We can improve the flow and strength of Injection Molded CAB screwdriver handles.

• Nano-Titanium Phosphatize for Flame Retardance

, àt

Classified TOP SECRET for DOD IM Program

RDX/CAB & Plastic Bound Explosives

(12) United States Patent Monte et al.

(54) ENHANCED ENERGETIC COMPOSITES

- (75) Inventors: Salvatore J. Monte, Staten Island, NY
 (US); Gerald Sugerman, Allendale, NJ
 (US)
- (73) Assignee: Kenrich Petrochemicals, Inc., Hudson, NJ (US)
- (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.

This patent is subject to a terminal disclaimer.

- (21) Appl. No.: 06/841,471
- (22) Filed: Feb. 18, 1986

AZO Foamed PVC Nitramine Blowing Agents: AZO, RDX, HMX

Control Volume: 320 cc Weight: 130.5 g Density: 0.408 g/cc Coordinate Phosphite Titanate Volume: 974 cc Weight: 126 g Density: 0.129 g/cc

• Nano-Titanium Phosphatize for Flame Retardance

• Nano-Titanium Phosphatize for Flame Retardance

Classified TOP SECRET for DOD IM Program

EXELENCE Copyright ©2021 Kenrich Petrochemicals, Inc.®. All rights reserved. The Kenrich molecule, Kenrich® name, and all Kenrich Petrochemicals, Inc. s. products denoted with a ® or 1th are trademarks of Kenrich Petrochemicals, Inc. 8.

Problem Solving Takeaways – Unplanned Detonation First ADPA Presentation – June 1, 1982

American Defense Preparedness Assoc., Joint Symposium on Compatability of Plastics/Materials with Explosives, Propellants and Pyrotechnics and Processing of Explosives, Propellants and Ingredients, June 1, 1982, Phoenix, Arizona, "The Potential of Titanate Coupling Agents in Solid Rocket Fuel Systems", S.J. Monte and G. Sugerman

First Picatinny Arsenal Presentation – January 10, 1983

ARRADCOM, Dover, NJ, Jan. 10, 1983

- Center for Professional Advancement, Plastics Composites, N. Brunswick, NJ, February 25, 1983
- Fillers and Coupling Agent Symposium, ARCO, Newton Square, PA, March 16-17, 1983

42. Naval Weapons Center, Yorktown, VA, April 20, 1983

• Nano-Titanium Phosphatize for Flame Retardance

Classified TOP SECRET for DOD IM Program

Problem Solving Takeaways – Unplanned Detonation

Nano-Titanium Phosphatize for Flame Retardance

Classified TOP SECRET for DOD IM Program

Any 12, 20, 24, 6, 27 (Jane - Gen ET (Vehani 2021, Vinyl, Recycling Summit WINYL, Briefer VINYL, Briefer

Advanced Solutions in Vinyl Recycling with Titanate Catalysts/Coupling Agents

Nano-Titanium Phosphatize for Flame Retardance

.3

ARMY Patent – 9-Years later Verifying Nano-Functionality

RDX/CAB & Plastic Bound Explosives

										US	005472531A			
	•			1	Un	nited S	States Patent [19	9]	[11]	Patent	Number:	5,472,531		
* *	(12)	Unite	d Stat		Tur	ci et al.			[45]	Date of	Patent:	Dec. 5, 1995		
	Monte et al.			I	[54] INSENSITIVE EXPLOSIVE COMPOSITION			ITION	4,853,051 8/1989 Bennett et al 149/19.4 5,240,523 8/1993 Willer					
	(54) ENHANO				[75]	Inventors:	Joseph Turci, Long Valley, N.J Mezger, Mt. Bethel, Pa.; Bern Strauss, Rockaway; Thelma M Montville, both of N.J.	J.; Mark ard Manning,	Primary Examiner-Donald P. Walsh Assistant Examiner-Anthony R. Chi Attorney, Agent, or Firm-Anthony T. Lane; Edward Go berg; John E. Callaghan				1-	
	(75)	Inventors:	Salvatore	I	[73]	Assignee:	The United States of America represented by the Secretary	a as of the	[57]		ABSTRACT			
			(US); Gera (US)				Army, Washington, D.C.		The explosive blasting composition in this invention con- tains 1 to 40 percent Aluminum powder, 40 to 80 percent				۰ ٦	
	(73) (*)	Assignee: Notice:	Kenrich Pe NL (US) Subject for patent is es U.S.C. 154	I	 [21] Appl. No.: 385,843 [22] Filed: Feb. 1, 1995 			Cyclotetramethylene Tetranitramine, 4 to 15 percent Cellu- lose Acetate Butyrate, 5 to 20 percent of 1:1 mixture of bis				2		
				1				2,2-dinitropropyl acetate and bis 2,2-dinitropropyl formal, and, and 0.25 to 0.75 percent Tri (dioctyl Phosphato) Titan-			- -			
					Related U.S. Application Data			ate.						
					[63] Continuati [51] Int. Cl. ⁶	Continuation of Ser. No. 983,954, Dec. 1, 1992, abandoned.		abandoned.	The method of making the above composition consists of					
						Int. Cl. ⁶ .	C06B 25/34	combining Cyclotetramethylene Tetranitramine, Cellulose Acetate Buterate, 1:1 bis 2.2-dinitropropyl acetate and bis						
			This patent		[52] [58]	U.S. Cl Field of S	earch 149/92; 149/88; 149/92, 149/92,	88, 109.6	2,2-dinitro titanate, r time. Prio	opropropyl mixed at an r to blowdo	formal, and tri elevated temper wn. the Aluminu	(dioctyl phosphato) rature for a period of m powder is added. to	_	
			ciamici.				(57)	ADC						
	(21)	Appl. No.:	06/841,471		(57)					STRAUI				
	(22)	Filed:	Feb. 18, 19	86			The instant invent neoalkoxy organo	tion relate titanates	s to the and orga	use of ce ano-zirco	rtain selecte nates in ene	:d r-		

Filed Feb. 1, 1995 INSENSITIVE EXPLOSIVE COMPOSITION Filed Feb. 18, 1986 ENHANCED ENERGETIC COMPOSITES

Function 1 – Dosage; Function 2 - Catalysis Function 3 – Nano- Ti-Phosphatization

United States Patent [19]

Turci et al.

US005472531A

[11]Patent Number:5,472,531[45]Date of Patent:Dec. 5, 1995

Distribution Statement A, Approved for public release. Distribution Unlimited

[54] INSENSITIVE EXPLOSIVE COMPOSITION

[75] Inventors: Joseph Turci, Long Valley, N.J.; Mark Mezger, Mt. Bethel, Pa.; Bernard Strauss, Rockaway; Thelma Manning, Montville, both of N.J.

- [73] Assignee: The United States of America as represented by the Secretary of the Army, Washington, D.C.
- [21] Aluminum Powder
- [22] (HMX)

F.

- Cellulose Acetate Butyrate
- Bis 2,2-dinitropropyl acetate
- [63] Bis 2,2-dinitropropyl formal
- [51]
 <u>Tri(dioctyl Phosphato) Titanate</u>
 <u>@ 0.25 to 0.75 percent</u>

4,853,051	8/1989	Bennett et al	149/19.4
5,240,523	8/1993	Willer	149/19.4

Primary Examiner—Donald P. Walsh Assistant Examiner—Anthony R. Chi Attorney, Agent, or Firm—Anthony T. Lane; Edward Goldberg; John E. Callaghan

[57]

ABSTRACT Issued Dec. 5, 1995

The explosive blasting composition in this invention contains 1 to 40 percent Aluminum powder, 40 to 80 percent Cyclotetramethylene Tetranitramine, 4 to 15 percent Cellulose Acetate Butyrate, 5 to 20 percent of 1:1 mixture of bis 2,2-dinitropropyl acetate and bis 2,2-dinitropropyl formal, and, and 0.25 to 0.75 percent Tri (dioctyl Phosphato) Titanate.

The method of making the above composition consists of combining Cyclotetramethylene Tetranitramine, Cellulose Acetate Buterate, 1:1 bis 2,2-dinitropropyl acetate and bis 2,2-dinitropropropyl formal, and tri (dioctyl phosphato) titanate, mixed at an elevated temperature for a period of time. Prior to blowdown. the Aluminum powder is added. to

Nano-Titanium Phosphatize for Flame Retardance

This explosive is used in the Penetration Augmented Munition as well as having potential for use on the guns for the Bradley Fighting vehicle, <u>in addition it has applications in the</u> following programs which involve blasting munitions: Multi-purpose Individual Munition, Bunker defeat Munition, Explosive foxhole digger, Bridge Road Munition, and any mining <u>or rock blasting application....</u>

Note 2: Our composition is the only one that is not sensitive to impact sensitivity, or sympathetic detonation.

... Safety is the uppermost in the minds of the military when fielding such compositions.

...We have found that our composition (based on 0.5% LICA 12) is the only composition at present, that can meet safety requirements. Various tests have shown that our composition performs as well or even better than any experimental blasting composition known to date. In fact our tests have shown that it performs ten percent better than the compositions of the art.

METHOD OF MAKING PREFERRED EMBODIMENT OF THE INVENTION Nano-Titanium Phosphatize for Flame Retardance Column 2, Line 18. Optionally LICA-12 may be used but not below 0.25% because it does not have the structural integrity to be able to cut. However, again, above 0.75% the composition is too inert.

composition is too inert.

Nano-Titanium Phosphatize for Flame Retardance • **Classified TOP SECRET for DOD IM Program Issued May 19, 1998** US005753853A United States Patent [19] 5,753,853 Patent Number: [11] Monte et al. Date of Patent: *May 19, 1998 [45] Held under DoD [54] SOLID PROPELLANT WITH TITANATE 4.050.968 9/1977 Goldhagen et al. 149/19.4 BONDING AGENT 4.090.893 5/1978 Cuckser et al. 149/19.9 **Secrecy Orders** 4.122.062 10/1978 Monte et al. 524/567 [75] Inventors: Salvatore J. Monte, Staten Island, 2/1984 Tremblay 149/19.4 4,430,131 N.Y.: Gerald Sugerman, Allendale. for 7/1986 Alien et al. 149/19.4 4.597.924 N.J.; Scott J. Dixon, Colorado Springs, 4,634,785 1/1987 Sugerman 556/17 Colo. 12-years-3-months [73] Assignee: Kenrich Petrochemicals, Inc., Bayonne, N.J. Primary Examiner-Edward A. Miller P Attorney, Agent, or Firm-Darby & Darby [*] Notice: The term of this patent shall not extend beyond the expiration date of Pat. No. [57] ABSTRACT 5,753,853. Liquid elastomer-based propellant having incorporated [21] Appl. No.: 835,879 Filed Feb. 20, 1986 Filed: Feb. 20, 1986 [22] organo-manates have positive bainistic and physical effects Int. Cl.⁶ C06B 45/10 on the propellants, serving to reduce burn rate exponents and U.S. Cl. 149/19.2; 149/19.4; 149/19.9 overall burn rates, as well as increasing the tensile strength Field of Search 149/19.2, 19.1, and elasticity of the propellant. Organo-phosphate and pyro-149/19.9 Copyright ©2021 Kenrich Petrochemicals, Inc.®. All rights reserved. The Kenrich molecule. Kenrich® name, and all Kenrich Petrochemicals, Inc.'s® products denoted with a ® or [™] are trademarks of Kenrich Petrochemicals, Inc. ®.

Problem Solving Takeaways From This Presentation - Catalysis

(2) Titanium, Zirconium & Aluminum Polymer Catalysis –without or with filler allows:

- Significant increase in unfilled polymer flow @ 0.2% additive.
- Lower polymer process temperatures from 10 to 40%.
- In situ copolymerization of dissimilar polymers #1 to #7.
- Reduce PVC plasticizer up to 18% to equal elongation.
- **Repolymerization:** Regenerate regrind to virgin properties.

Problem Solving Takeaways From This Presentation - Catalysis

(2) Titanium, Zirconium & Aluminum Polymer Catalysis –without or with filler alk vs:

- Lower process temperatures from 10 to 40%.
- **Repolymerization:** Regenerate regrind to virgin properties.

Problem Solving Takeaways From This Presentation - Catalysis

(2) Titanium, Zirconium & Aluminum Polymer Catalysis – without or with filler allows:

0.2% Zirconate in recycled unfilled / transparent rigid PVC to extrude twice as fast as the control @ 24% lower temp.

Transparent Recycled PVC Extrusion

Oviedo Spirits Club..

https://omnexus.specialchem.com > selection-guide > p...

PVC heat sensitivity in recycle

Polyvinyl Chloride (PVC) Plastic: Uses, Properties, Benefits ...

Explore **Polyvinyl Chloride** (**PVC**) a rigid and flexible **plastic** **PVC** (glass transition **temperature**: 70-80°C) is produced by polymerization of ... **PVC** is **sensitive** to the thermal

history and the window of processing temperatures is quite small. ... Recycled PVC can be used

to produce packaging, film and sheet, loose-leaf ...

The window of PVC RECYCLE processing temperatures

JS924&og=PVC+heat+sensitivity+in+recycle&ags=chrome..69i57i33i160I3.16262i0i15&si

https://plasticsrecycling.org > pvc-design-guidance

PVC Design Guidance - The Association of Plastics Recyclers

However, the low melting **temperature** and chemical composition of **PVC** makes it ... Anticipating the development and growth of future **PVC recycling** programs, ...

Х

is made wider.

Competitive Copyright 2020 Kerrich Petrodemicals, Inc. 6. All rights reserved. The Kerrich/Fearrie, and all Kerrich Petrodemicals, Inc. 9. B products denoted we a normalized structure encoder to the Control of Section 2010 (2010).

PLASTICS 2021

KENRICH

SPE Fellow & Honored Service M

Copyright 02021 Kenrich Petrochemicals, Inc.8. All right

2021 Summ

SPE VINYLTEC*

PDA Jarra of Governors - N

PLASTICS Voting Member & Recycle Su

Hosted VINYLTEC 2010 as Preside

vand

Tit

450- ACS CAS Abstracted W SCI CE II

32-US Patents Filed Worldwide

Classified TOP SECRET for DOD I

de, Kenrich@name, and all Kenrich Petrochemicals, Inc.'s8 products den

One of 32-US Patents: "REPOLYMERIZATION" **Mechanical Properties** of 11 – Unfilled Plastics

6-Ti/Zr @ 4 dosages

REPOLYMERIZATION

e	United S	tates Patent [19]	[11]	Patent Number:	4,657,988
			[45]	Date of Patent:	Apr. 14, 1987
	[54] REPOLYM	IERIZATION	imary I	Examiner-Lucille M. Ph	ynes
c	[75] Inventors:	Gerald Sugerman, Allendale, N.J.; Salvatore J. Monte, Staten Island,	Attorne, Sternberg	Agent, or Firm-Bert J. 1	Lewen; Henry
		N.Y.	[57]	ABSTRACT	
	[73] Assignee:	Kenrich Petrochemicals, Inc., Bayonne, N.J.	Polymeric admixing	c materials are repolyn the olymer with an add	nerized by intensely litive having the for-
V	[21] Appl. No.:	834,794	mula:		
-	[22] Filed:	Feb. 28, 1986		RH	.Ф.
	P. J.	application Data			3)6(C)c
	[63] Continuation 1985, which 609,727, Ma	n-in-part of Ser. No. 725,437, Apr. 22, h is a continuation-in-part of Ser. No. y 14, 1984, abandoned.	wherein 1	k² Ĥ M is titanium or zirconiu	m, R, R ¹ and R ² are
	[51] Int. Cl. ⁴ [52] U.S. Cl 525/44	C08G 63/76 525/437; 525/390; 14; 525/453; 525/534; 528/17; 528/56; 528/207: 528/279: 528/286: 528/288	each a ma or alkary halogen c addition,	phovalent alkyl, alkenyl, 1 group having up to 20 or ether substituted deriv. \mathbb{R}^2 may also be an oxy d	alkynyl, aralkyl, aryl) carbon atoms or a ative thereof, and, in erivative or an ether
	[58] Field of Sea 52	rch 525/390, 437, 444, 453, 25/534; 528/17, 56, 207, 279, 286, 288	substitute are each	d oxy derivative of said a monovalent aroxy, this	groups; A, B, and C paroxy, diester phos-
	[56]	References Cited	or carbo	xyl containing up to 30	carbon atoms: and
	U.S. F	ATENT DOCUMENTS	a+b+c=	3. The repolymerized	polymers have im-
	4,036,796 7/1 4,115,371 9/1	977 Sugiyama et al. 525/437 X 978 Bier et al. 528/286 X 970 True et al. 528/286 X	temperation show greaters	nysical properties and h ares, experience less ther eater solvolysis resistance	igher heat distortion mal degradation and e than the polymers

4,030,790	1/12/1	Sugiyania ci ai J2J/43/ A
4,115,371	9/1978	Bier et al 528/286 X
4,148,989	4/1979	Tews et al 525/437
4,452,970	6/1984	Brunelle 528/279
4,454,312	6/1984	Kuze et al 528/279 X
4,482,700	11/1984	Kühnrich et al 528/279

prior to the repolymerization.

5 Claims, No Drawings

Unfilled Plastics Data

Problem Solving Takeaways From This Presentation - Catalysis

(2) Titanium, Zirconium & Aluminum Polymer Catalysis –without or with filler alk vs: Polymer Mechanical Properties Are Increased.

Provides Nano-Titanium Technology for VINYL RECYCLING of Polymers #1 to #7

Titanium/Aluminum Filler Coupling Agent & Polymer Catalyst Additive for Mechanical Recycling of Polymers #1 to #7

Developed from a Half-Century of Nano-TITANATE Experience

New coupling agent fo	r filled polyethylene			
Ken-React TTS ¹ , a trilisostearic isopropyl Blanate ester, is a very officielly coupling agent for calcium carbonate lifer in PE. The compounder can take 100 hb. of HOPE and Bill it with 157 hb. of CaCo, Biller and Coubin properties essentially exolusion to 100 humidia algorithm. These secondaries to 100 humidia algorithm. These isoprograms and an exonoblainable without coagent treatment with TTS.	tense (vise) slikes (A-172) [4] and utific-tared systems instruction incompatibility of inorganic filters in coganic methods incompatibility of inorganic filters in coganic methods by atteched organofesticionia tabulizations to the filter sardle state of the organic backboos via an interfacial The inorganic metanic, when treated with coganics in converted to a minoral filter with organic appendiques that opposite and by the organic appendiques that pilic ared by deposite in the three compatibility of the organic metals and the organic pilic state of the organic appendiques that billic ared by deposite in the three compatibility of the organic metals are observed as the organic pilic state of the organic pilic stat			
A technical feature Gordon M. Kline, technical editor	drophilic: 2) improved compatibility and dispersion: 3) ability of the filter organic appendage to cater into the crosslink mechanism in thermoset polymerics: 4) avail- ability of the filter organic appendages to mix with the or- ganic matrix and provide a molecular chain for the trans-			
Utail receipt, energy and filters were two of the issue- ment of the importance composition. Tools, how- rere, the composition must consider every realistic tra- ent of the importance of the second second second second hermospheric and relative transformed and the second hermospheric and relative transformed and new said helps of polymers. The importance of the filter source has the second second second second second second second second second second second second second second second second second s	where whose body represe its diverging the polymetrics. The effect on filter translate with substantial organo- fractional island congents in cored systems is well how made significant breakhoughts on importing the transla- storage of the substantial system is a starting of the strength, medialas, and heat-defection temperature of the polymetric compound in applications such as conting- tion of the polymetric compound in applications are as a conting- tifier initiations is a coagere molecule designed ipecifi- tifier initiations is a coagere molecule designed ipecifi-			
A number of theories have been postulated to explain filler strain phenomena occurring in the macromolecular state using conventional filler compounding techniques: I) The imparted strain to the composite occurs in the poly- mer phase independent of the filler phase; (1)# 2) The im- parted strain to the composite occurs equally in the poly- meric matrix and filler phase; if the tensile strength of the	Step 1 (incredients): Organic paymer Wepatic paymer Trippenic Wepatic paymer Trippenic Wepatic paymer Trippenic Wepatic paymer Trippenic Wepatic paymer Trippenic Wepatic paymer Trippenic Wepatic paymer Trippenic Wepatic paymer Trippenic Wepatic paymer Trippenic			
The price is practice than that for the polymer phase, they in the composite increases (), 3) The impact taxis to the polymer taxis () the taxis of the taxis () the taxis differ particle is of the same order of magnitude as the di- duction of the taxis () the taxis () the taxis of the taxis of the polymer marks (a) the taxis (). The taxis of taxis taxis () the taxis () the taxis () the taxis of the taxis taxis () the taxis () the taxis () the taxis () the taxis taxis () the taxis () the taxis () the taxis () the taxis taxis () the taxi				
*Escousive vice president, Kenrich Petrochemicals Inc. Professer, Chemical Engineering, Polytechnic Institute of New York. 1–Trademark, Kenrich Petrochemicals Inc.	Fig. 1: Coupling in cured systems			

1074 Modern Diestice Article

My Mission Statement for the last 46-years is "...To teach the more efficient use of raw materials through the use of titanates and zirconates."

📧 🚛 Copyright ©2020 Kenrich Petrochemicals, Inc. ®. All rights reserved. The Kenrich molecule, Kenrich 🖲 name, and all Kenrich Petrochemicals, Inc. 😒 products denoted with a 🖲 or 🍽 are trademarks of Kenrich Petrochemicals, Inc.

Trade Shows, TableTops & Conference Papers

FINER FOAD CELL STRUCTURE Titanate Increases Strength of AZO Foamed PVC Plastisol

lith Titanate

No Infanate

VINYLTEC[®] 2004 Paper – Over 450 Published Works

developments & applications KR 2385 19 KR TTS 1% Stearic Acid 19 50

3-decades of PVC

100 CaCO3 PHR Figure 41 - Increased heat stabilizing effect of titanate treated CaCO, in filled rigid PVC.

Figure 42 - 60 phr 5µ CaCO₃, 1% KR 385 pretreated filled rigid PVC injection molded yoke.

SPE VINYLTEC 2004

KENRICH

PVC Chapter – Reference Manual – Pages 108-120 Printed in 1985

PVC

PVC compounds often make wide use of plasticizers. The key advantage of the neoalkoxy titanates over monoalkoxy titanates in PVC applications is the enhanced reproducibility caused by their greater solvolytic stability in the presence of the wide variety of ester plasticizers commonly used. PVC compounding is usually divided into three areas: plastisols, flexible and rigid. Each area has its own general applications methodology

PVC Plastisol Compounding

General Applications Method A methodology and sequence of addition for ontinum results is: 1. Plasticizer into titanate "washed" bowl using Hobart beater type mixer. Intensive mixing and shear is necessary. Hand stir

adings, a Cowles dissolver rather than a Hobart mixer may be more effective ((see discussion of Table 183 in Plastisol Applications Data Section). 2. Add selected titanate, % by weight of filler as per dosage table, and blend. 3. Add filler and blend using proper specific energy techniques. 4. Add PVC resin in increments 5. Add stabilizers and blend. 6. Fusion at lower temperatures than the control to obtain greater flexibility is also suggested.

ing is not always adequate. At higher

Flexible PVC Compounding

General Applications Method 1. It is most desirable to spread the titanate out via dilution in the ester plasticizer used. Often, low shear ribbon blenders are used prior to intensive mixing (com-

uniform results. The sequence of addition of multicomponent recipe ingredients often die tates results. Mixing the plasticizer titanate and filler intimately before the addition of PVC and other additives i

preferred for monoalkoxy types. Resi dence time of the titanate in the ester plas ticizer, in the absence of particulate, is o major concern with monoalkoxy type and of less concern with neoalkoxy type. (See Dry Blend Applications Methods on page 109 for neoalkoxy CAPOW L38/H) How ever, first try the titanate in a manne which will least disrupt your present oper ating procedures.

pounding) and liquid titanate added alone

will frequently localize and give non

The interreaction of titanates with the many proprietary stabilizers used in Flexi ble PVC has not been completely estab lished. Also, results will vary epending or the molecular weight distribution of the PVC used.

Table 181

EVALUATION OF 1/2% KR 138S TITANATE BY WEIGHT OF VARIOUS FILLERS IN PVC PLASTISOL

Formulation: Geon 121 Resin - 100, DOP - 60, Drapex 4.4 - 5, Mark 1605 - 2, Filler - As Shown

	CaCO ₃ - 50 pts (Atomite)		Clay - 25 pts (ASP-170, W.W.)		Clay - 25 pts (Whites, Calc.)		Talc - 25 pts (Nytal 300)	
	Control	KR 138S	Control	KR 1385	Control	KR 138S	Control	KR 138S
		Bro	okfield RVF Vi	scosities, Cen	tipoises, 25°C,	20 RPM		
Initial	14000	9700	32500	28500	25250	24500	21000	13500
1 Day	22500		43000	28500	33500	33500	24750	14000
7 Days	29500	16500	47500	28500	44500	45750	20750	17000
14 Days	33500	19250	50000	29000	55000	45000	25000	16500
28 Days	33500	19000	60000	29000	60000	42000	28000	22500
			Physical	Properties - Fu	sion in 340°F			
Tensile Str., psi	1900	1830	2160	2420	2080	2015	1540	2000
100% Modulus, psi	890	860	740	930	960	900	1100	1060
Elongation, %	350 +	350	400+	400 +	250+	350	350	390
Shore A Hardness	82	79	80	81	82	78	81	80
	TIO2 -	25 pts	Silica	25 pts	AI(OH)3	- 25 pts		
	Control	KR 1385	Control	KR 1385	Control	KR 1385		
		Brookfield R	VF Viscosities	, Centipoises,	25°C, 20 RPM			
Initial	32000	21500	17500	15750	10400	8300		
1 Day	33000	22500	19500	15500	13500	9200		
7 Days	47500	25500	26500	22250	13500	12200		
14 Days	45500	25500	34750	18250	14600	14200		
28 Days	56000	25500	31750	18750	14600	14400		
		Phy	sical Propertie	is - Fusion @ 3	340'F			
Tensile Str., psi	2200	2150	2150	2280	1610	1565		
100% Modulus, psi	975	945	945	935	820	795		
Elongation, %	405	395	380	425	300 +	275 +		
Shore A Hardness	75	75	75	76	80	79		
				108				

Copyright ©2021 Kenrich Petrochemicals, Inc.®. All rights reserved. The Kenrich molecule. Kenrich® name, and all Kenrich Petrochemicals, Inc. % products denoted with a ® or ™ are trademarks of Kenrich Petrochemicals. Inc. % KAL KENELCH

SPE VINYLTEC 2004 Technical Paper

PVC Chapter – Addendum to 340-Page Reference Manual

July 9-11, 2017

Brown Palace Hotel July 9-11, 2017.

Developed from a Half-Century of Nano-TITANATE Experience

... & Conference Papers

Is China Cleaning Our R&D Clocks in PVC Compatibilization and Nanotechnology While We Combat Prop 65 and Regs

Monday – July 10, 2017 – 3:15pm-4:00pm

Salvatore J. Monte

www.4kenrich.com

sjmonte@4kenrich.com

Abstracts Based on Subject Titanates & Zirconates

Up to 2013 – China = 25% of Abstracts 2013--2016 – China = 72% of Abstracts 2015--2020 – China = 85% of Abstracts Developed from a Half-Century of Nano-TITANATE Experience

📧 🗤 Copyright ©2021 Kenrich Petrochemicals, Inc.®. All rights reserved. The Kenrich molecule, Kenrich® name, and all Kenrich Petrochemicals, Inc.'s® products denoted with a ® or 11 are trademarks of Kenrich Petrochemicals, Inc. ®.

SCIENCE I

Abstracts Based on Subject Titanates & Zirconates

In PVC/Polymer Blends – Regenerated PVC

The CAS Search Service Science IP Order: 3140835 Client Reference: None Ti/Zr Coupling Agents – July 25, 2013-date Modified Update of Science IP Order 3069078 The CAS Search Service Science IP Order: 3069078 Client Reference: Kenrich Products by CAS Registry Numbers Kenrich Products by CAS Registry Numbers Search Report Prepared for Salvatore J. Monte, President Kenrich Petrochemicals, Inc. July 24, 2013

📧 🚛 Copyright ©2017 Kenrich Petrochemicals, Inc. 🖲. All rights reserved. The Kenrich molecule, Kenrich® name, and all Kenrich Petrochemicals, Inc. S® products denoted with a 🖲 or 🍽 are trademarks of Kenrich Petrochemicals, Inc. 🖲

L19 ANSWER 321 OF 3545 HCA COPYRIGHT 2013 ACS on STN AN 157:736344 HCA <u>Full-text</u> <<LOGINID::20130724>>

TI New colored plastic steel profile manufactured from

regenerated polyvinyl chloride

PA Shucheng Antai Plastic Product Co., Ltd., Peop. Rep. China

- AB The plastic comprises regenerated
- PVC 100-120,
- titanate modified nano Ca carbonate 25-30,
- Ca-Zn stabilizer 1-2,
- stearic acid 1-2,
- dioctyl ester 0.5-1,
- plasticizer (epoxyfatty acid Me ester) 0.5-1
- chlorinated PE 2-4,
- ABS high-glue powder 2-5,
- PE wax 0.1-0.5,
- paraffin wax 0.5-0.7,
- acrylate impact modifier ACR 2-5,
- MBS 2-5,
- iron oxide red 2-5,
- carbon black 0.01-0.04,
- pigment 0.1-0.2 part.

REPOLYMERIZATION: Improve the mechanical properties of 11-Unfilled Polymers #1 to #7

[34]	REPOLYS	GREZATION	Privary I	Excelow-Lastle M. P.	Apress .
[75]	Investors	Gerald Supernan, Allendele, N.J.; Salentare J. Maste, States Tokad,	Accessly, Stensberg	Agons, or First-Bert 3.	Lowence Henry
173	Ailigne	Konrich Petrochamicals, Inc., Bayrana, N.J.	Polymori admixing	t materials are repoly the polymer with an ad	carized by intensely drive having the for
1211	Appl No.	834,784	ends:		
1201	Fiel	Fuls, 28, 2886		6 6	
	Bate	and U.S. Application Data		8	Red Di
101	Condinantia 1985, while 608,727, Mil	whereast of New New 725,437, Apr. 25, 5 is a constitution/separt of New New 19 34, 1934, sheedward.	wherein !	A ^o A M is thusium or dirocal	ane, R. R. ¹ and R ¹ or
믭	las, Cl./ U.S. Cl S15/4	C2863 63/76 835/437 535/365 44 525/453 52/345 538/17, 535/36	ench o me or alkary baloges o addition.	one-valent alkyl, alkenyl, i group having up to 3 ar ather substituted deriv R ² may also be as easy -	alkynyl, araligi, ary 0 carbon atores of intre thereof, and, is intrivitive or as othe
1584	Pield of No. 5	arch	and on the second	d any derivative of said a monovaliset arcoxy, th	groups; A. B. and C.
194	0.8.1	Reference Cited	proster de proster de s+d+co	color pyrophospinic, or eyi containing up to 3 3. The copolymerized	o carbon atoms, saltony o carbon atoms, and polymers have in
AND MAKE	4,016,786 3/ 4,115,371 8/ 4,148,789 4/ 4,453,970 6/ 4,454,312 8/ 5,453,700 11/	1977 Supports of al. S23/457 X 1978 Tays of al. S23/457 1978 Kansele S23/257 1984 Kansele S23/252 1984 Kansele al. S23/279	proved p temperate show gas prior to t	Approximation properties and urea, experience has the sater solverpris resistant for repolymentation. 6 Chains, No Deputy	ligher heal distortion read degradation an re finis the polymer

Apr. 14, 1987 – Monte Patent named "REPOLYMERIZATION"

📧 🚛 Copyright ©2021 Kenrich Petrochemicals, Inc.®. All rights reserved. The Kenrich molecule, Kenrich® name, and all Kenrich Petrochemicals, Inc.'s® products denoted with a 🛚 or 🍽 are trademarks of Kenrich Petrochemicals, Inc. 🧶

Copyright ©2020 Kenrich Petrochemicals, Inc.®. All rights reserved. The Kenrich Petrochemicale, Kenrich® name, and all Kenrich Petrochemicals, Inc.'s® products denoted with a ® or 1^w are trademarks of Kenrich Petrochemicals, Inc.®.

Three graduates from the University of **KENtucky** who were going to get **RICH** with a aromatic resin product called Kenflex - 1945.

CENTRY Constraints of the control of

Pre-1961

Maspeth, Queens

Aromatic

Pre-1961

Maspeth, Queens

A DuPont Wire & Cable Symposium on Hypalon and Neoprene

Excerpts on The Use of Kenflex A in Hypalon and Neoprene

10 East 22^{na} Street • Bayonne, NJ 07002-0032 USA •823-9000 • Toll Free: 866-KENRICH • Fax: 201-823-0691 nil: sales@4kenrich.com • Web: www.4kenrich.com

September 1959

Copyright ©2020 Kenrich Petrochemicals, Inc.®. All rights reserved. The Kenrich molecule, Kenrich® name, and all Kenrich Petrochemicals, Inc. s® products denoted with a ® or 1¹² are trademarks of Kenrich Petrochemicals, Inc.®.

A DuPont Wire & Cable Symposium on Hypalon and Neoprene

Excerpts on The Use of Kenflex A in Hypalon and Neoprene

140 East 22nd Street • Bayonne, NJ 07002-0032 USA Tel: 201-823-9000 • Toll Free: 866-KENRICH • Fax: 201-823-0691 Email: sales@4kenrich.com • Web: www.4kenrich.com

Aromatic Resins 1961 - 2015 **Bayonne, New Jersey**

1961 to 2015 Products made in Bayonne, NJ

2015 to Now Products made in Decatur & Dayton, TN

Copyright ©2018 K.

Cymer-Dayton Facility - 411 Manufactures Road, Dayton, TN

Cymer,LLC Decatur Facility - 124 Cymer Lane,Decatur, TN

Petrochemicals. Inc. ®.

Extuances Copyright ©2020 Kenrich Petrochemicals, Inc.®. All rights reserved. The Kenrich molecule, Kenrich® name, and all Kenrich Petrochemicals, Inc. S® products denoted with a 🛛 or 🍽 are trademarks of Kenrich Petrochemicals, Inc. ®

Copyright ©2020 Kenrich Petrochemicals, Inc.®. All rights reserved. The Kenrich molecule, Kenrich® name, and all Kenrich Petrochemicals, Inc.'s® products denoted with a ® or ™ are trademarks of Kenrich Petrochemicals, Inc.®.

Same 3 Copyright © 2020 Kenrich Petrochemicals, Inc.®. All rights reserved. The Kenrich molecule, Kenrich® name, and all Kenrich Petrochemicals, Inc.'s® products denoted with a ® or 1^w are trademarks of Kenrich Petrochemicals, Inc.®.

Inc.'s® products denoted with a ® or ™ are trademarks of Kenrich Petro

Invention: Transesterify 3-moles Isostearic Acid with 1-mole TIPT

Function 1 – Coupling

Convision Convis

The Six Functions of the Titanate Molecule

1.5-Nanometer Atomic Monolayer

1,600,000 cps

12,800 cps

55% ZnO Dispersed In Mineral Oil CONTROL

0.5 wt. % TITANATE

COUNTIEND Copyright ©2020 Kenrich Petrochemicals, Inc.®. All rights reserved. The Kenrich molecule, Kenrich® name, and all Kenrich Petrochemicals, Inc.'s® products denoted with a ® or 1rd are trademarks of Kenrich Petrochemicals, Inc. ®.

Patented ZnO Apps

SCIENCE IP®

Order 2435843

Ti or Zr coupling agents [20071228-20080930/ED] | Search Report

Prepared for Salvatore J. Monte, President of Kenrich Petrochemicals, Inc.

September 30, 2008

CONFIDENTIAL

Science IP • 2540 Olentangy River Rd. Columbus, OH 43202 • Science IP@cas.org • 1-866-360-0814 • FAX 614-447-5443

ZnO filled chloroprene and natural rubber Faculty of Sciences and Engineering Technology, Yemen

ZnO and Metal Hydroxides as Flame Retardants School of Chem. & Environmental Sci., Hebei U., China

ZnO Sunscreen *Kosei Co., Ltd., Japan*

Cosmetic Sunscreen ZnO

TiO2 and Transparent ZnO Kobo Products, Inc., USA

Aluminum or ZnO Heat Conductive Composites Foxconn Technology Co., Ltd., Taiwan

Nano Functional ZnO, Tourmaline, Alumina, Zirconia, Magnesium Oxide, Titania, and Maifan

Stone Filled Polyamide, PET, Polyacrylonitrile, and PU Diamond Polymer Science Co., Ltd., Taiwan

Titanate/Silane ZnO Treatment for Silicone Kosei Co., Ltd., Japan

Sand-fixing agent w. hi-strength in petroleum recovery Petrochina Co., Ltd., Peop. Rep. China

Isopropyl Titanium **Triisostearate** is the World **Standard for** Dispersion Of TiO2 and ZnO in Facial Cosmetics and Sun Block **Formulations**

2020:EU REACH Registered in 680 Cosmetic Formulations

Extures Copyright ©2020 Kenrich Petrochemicals, Inc.®. All rights reserved. The Kenrich molecule, Kenrich® name, and all Kenrich Petrochemicals, Inc. S® products denoted with a 🛛 or 🕨 are trademarks of Kenrich Petrochemicals, Inc. ®

Advanced Solutions in Vinyl Recycling with Titanate Catalysts/Coupling Agents

FACIAL COSMETICS

Improving COLOR & APPEARANCE

EX GLUELES Copyright ©2021 Kenrich Petrochemicals, Inc.®. All rights reserved. The Kenrich molecule, Kenrich® name, and all Kenrich Petrochemicals, Inc.'s® products denoted with a ® or 1th are trademarks of Kenrich Petrochemicals, Inc. ®.

FDA's Voluntary Cosmetic Registration Program (VCRP)

Safety Assessment of Titanium Complexes as Used in Cosmetics

Status:Final ReportRelease Date:June 5, 2019Panel Date:April 8-9, 2019

The 2019 Cosmetic Ingredient Review Expert Panel members are: Chair, Wilma F. Bergfeld, M.D., F.A.C.P.; Donald V. Belsito, M.D.; Ronald A. Hill, Ph.D.; Curtis D. Klaassen, Ph.D.; Daniel C. Liebler, Ph.D.; James G. Marks, Jr., M.D.; Ronald C. Shank, Ph.D.; Thomas J. Slaga, Ph.D.; and Paul W. Snyder, D.V.M., Ph.D. The CIR Executive Director is Bart Heldreth, Ph.D. This report was prepared by Wilbur Johnson, Jr., M.S., Senior Scientific Analyst.

© Cosmetic Ingredient Review 1620 L STREET, NW, SUITE 1200 © WASHINGTON, DC 20036-4702 © PH 202.331.0651 © FAX 202.331.0088 © <u>CIRINFO@CIR-SAFETY.ORC</u> ...According to 2019 VCRP data, Isopropyl Titanium Triisostearate is reported as being used in 513 cosmetic products (506 leave-on and 7 rinse-off products); <u>half of the reported uses are in</u> <u>lipstick formulations (253).</u>⁸

...use survey conducted by the Council in 2017 indicate that Isopropyl Titanium Triisostearate is used in leave-on products (eye shadows) and at concentrations up to 0.3% in rinse-off products (eye make-up

removers)...

Invention/Technology Evolution – 1973 to 2020

2019 Drawing – Fe2O3/Titanate 1973 Drawing by S. J. Monte

Function 1 – Coupling

Recycled PVC Compounds **Contain A** Mixed **Bag of Inorganic &** Organic Additives

Converged Conver

Organometallic Catalyst

The Llquid Coupling Agent can be added to the liqui-color concentrate and then added at the hopper.

Liquid titanate added to color concentrate

"Silanes"-Plueddemann: "... Only slight improvement was imparted ... titanium dioxide and zinc oxide."

A low dosage of **Titanate** added in situ into mineral oil followed by filler addition reduces viscosity

A low dosage of Titanate added in situ into mineral oil followed by filler addition reduces viscosity

A low dosage of Titanate added in situ into mineral oil followed filler addition reduces viscosity

Reacts with Sustainable Organics such as Flax & Cellulose

Copyright ©2020 Kenrich Petrochemicals, Inc.®. All rights reserved. The Kenrich molecule, Kenrich® name, and all Kenrich Petrochemicals, Inc.'s® products denoted with a ® or ¹¹⁴ are trademarks of Kenrich Petrochemicals, Inc. ®.

Titanate Coupling to XC-72 Conductive Carbon Black in Water

No Titanate

Titanate

No Mechanical Stirring

RESISTIVITY OF 3.75% XC-72R CONDUCTIVE BLACK IN STYRENE-BUTADIENE BLOCK COPOLYMER/PS

Wt.% LICA 09 Carbon Black	Resistivity	
	Surface, Ω/sq.	Volume, Ω·cm
Control	> 1016	7.8 x 10 ¹⁴
0.67	1.7 x 10 ¹²	3.0 x 10 ¹²
1.00	2.1 x 10 ⁸	4.3 x 10 ⁷
2.00	5.7 x 10 ⁷	3.7 x 10 ⁷

EXTENSIVE Copyright ©2021 Kenrich Petrochemicals, Inc.®. All rights reserved. The Kenrich molecule, Kenrich® name, and all Kenrich Petrochemicals, Inc. % products denoted with a ® or ¹¹⁴ are trademarks of Kenrich Petrochemicals, Inc. ®.

The Next Frontier in Polymer Composite Innovation

EXTANDED Copyright ©2021 Kenrich Petrochemicals, Inc.®. All rights reserved. The Kenrich molecule, Kenrich® name, and all Kenrich Petrochemicals, Inc.'s® products denoted with a ® or ¹¹⁴ are trademarks of Kenrich Petrochemicals, Inc. ®.

The Next Frontier in Polymer Composite Innovation

391 Abstracts based on Ti/Zr

$\begin{array}{c} \begin{array}{c} & H & H & H \\ C = C & H & - K - C - C - K \\ H & H & H \end{array} \end{array} \begin{array}{c} \begin{array}{c} H & H & H \\ T & T & - K - C - C - K \end{array} \\ \begin{array}{c} \end{array} \begin{array}{c} Addition \ Polymers \end{array} \\ \begin{array}{c} Are \ Different \end{array} \end{array}$

PE-HD

Plastics #1 to #7 are incompatible with each other

NOT KENDLED Copyright ©2020 Kenrich Petrochemicals, Inc.®. All rights reserved. The Kenrich molecule, Kenrich® name, and all Kenrich Petrochemicals, Inc.'s® products denoted with a ® or 11 are trademarks of Kenrich Petrochemicals, Inc. ®.

EXAMPLE Copyright ©2020 Kenrich Petrochemicals, Inc.®. All rights reserved. The Kenrich molecule, Kenrich® name, and all Kenrich Petrochemicals, Inc.'s® products denoted with a ® or 114 are trademarks of Kenrich Petrochemicals, Inc. ®.

EX SELECE Copyright ©2020 Kenrich Petrochemicals, Inc.®. All rights reserved. The Kenrich molecule, Kenrich® name, and all Kenrich Petrochemicals, Inc.'s® products denoted with a ® or 1th are trademarks of Kenrich Petrochemicals, Inc. ®.

Add to the mix: Polymers #1 to #7 & Fillers, Fibers, Pigments, etc.

RECYCLE Technology Challenge: Incompatibility of Fillers & Polymers

PE & PP are ADDITION POLYMERS PET is a CONDENSATION POLYMER

Incompatibility PE & PP

Incompatibility PET & PE

RECYCLE Technology Challenge: Incompatibility of Fillers & Polymers

PE & PP are ADDITION POLYMERS PET is a CONDENSATION POLYMER

Incompatibility PE & PP

PETE

Trouble Shooting for Injection Molding Process

- Black Spots, Brown streaks.
- Blisters (Air Entrapment).
- Brittleness. Bubbles.
- Burn Marks, Dieseling.
- Cracking, Crazing.
- Delamination
- Discoloration.
- Excessive Flash.
 Elow Halo Blush
- Flow, Halo, Blush Marks.
 Gate Stringing, Drooling.
- Gels.
- Jetting.
- Material Leakage.
- Oversized Part.
- Part Sticking.
- Short Shot (Incomplete Filled Parts).
- Sink Marks.
- Splay Marks, Silver Streaks.
- Sprue Sticking.
- Surface Finish (Low Gloss).
- Surface Finish (Scars, Wrinkles).
- Undersized Part.
- Valve Pin Does Not Close.
- Voids.
- Warping, Part Distortion.
- Weld Lines.

Injection Molding Delamination 5% PP (Tupperware) in 95%

HDPE (Milk Jug) = part reject

📧 💷 Copyright ©2020 Kenrich Petrochemicals, Inc.®. All rights reserved. The Kenrich molecule, Kenrich® name, and all Kenrich Petrochemicals, Inc. 🕫 products denoted with a 🖲 or 🕨 are trademarks of Kenrich Petrochemicals, Inc. 🖲

Sustainability Goals such as a Circular Economy using <u>Curbside Recycle</u> in new plastic parts is **technically not possible with current industry practices:**

Sustainability Goals such as a Circular Economy using <u>Curbside Recycle</u> in new plastic parts is **technically not possible with current industry practices:**

Extracted Copyright ©2020 Kenrich Petrochemicals, Inc.®. All rights reserved. The Kenrich molecule, Kenrich® name, and all Kenrich Petrochemicals, Inc.'s® products denoted with a ® or ™ are trademarks of Kenrich Petrochemicals, Inc. ®.

EX SALARCER Copyright ©2020 Kenrich Petrochemicals, Inc.®. All rights reserved. The Kenrich molecule, Kenrich® name, and all Kenrich Petrochemicals, Inc.'s® products denoted with a ® or 1^m are trademarks of Kenrich Petrochemicals, Inc. ®.

Chain Scissoring Effect - 6 Heat Cycles on LDPE/PP – 50/50 Regrind

REPOLYMERIZATION of LDPE/PP – 50/50 Regrind Using 1% Titanate Catalyst Pellet = 2 parts per thousand Titanate

New thinking in **Compatibilization & Polymer Regeneration via Ti / Zr Coupling & Catalysis** to reduce the need & cost to sort materials so as to broaden **Recycling Compounding** Capability PVC, PC & PA6 & other **Engineering Plastics can be** processed at much lower temperatures.

- Maleated polymer compatibilizers work on Addition
 Polymers but depolymerize
 Condensation
 Polymers.
- Maleated polymers couple polymers but not fillers.

PC IS A CONDENSATION POLYMER Molded @100°C lower Temp. (188°C vs. 304°C) 40% FG/PC Control – Injection Molded @ 304°C (580°F)

1% Ken-React[®] CAPS[®] – Injection Molded @ 188°C (370°F)
Titanate Catalysis Unfilled EPR

It's like adding 15phr plasticizer while increasing both Tensile Strength & Elongation

1000g off 2-roll mill

0.2% Titanate

Copyright ©2020 Kenrich Petrochemicals, Inc.®. All rights reserved. The Kenrich molecule, Kenrich® name, and all Kenrich Petrochemicals, Inc.'s® products denoted with a ® or 1ª are trademarks of Kenrich Petrochemicals, Inc.

UNFILLED WB ACRYLIC Automotive Tin Plate

Function 1 – ADHESION

Function 2 – CATALYSIS

Function 3 - PHOSPHATIZE

Copyright ©2020 Kenrich Petrochemicals, Inc.®. All rights reserved. The Kenrich molecule, Kenrich® name, and all Kenrich Petrochemicals, Inc. s® products denoted with a 👁 or 🏻 are trademarks of Kenrich Petrochemicals, Inc. ®

Compatibilizing Recycled PET/PC – 80/20 Blend Using 0.3% CAPOW[®] Titanate Catalyst – 100°C lower Temp.

Copolymerization of Two Dissimilar Condensation Polymers

Extruded@ 180°C using 0.3% CAPOW[®] L[®]12/H Titanate Catalyst vs. 280°C without the Additive

Regrind: Compatibilizing HDPE / Nylon Film Using 0.2% Titanate Catalyst

HDPE – Addition + Polymer

NYLON – Condensation Polymer

╉

71-ABSTRACTS on POLYBLENDS – sjmonte@4kenrich.com EARLING W. SCIENCE The second second sector of the sector sector is not been Emante---ALC: NO. OF COMPANY THE REPORT OF ANY ADDRESS Minor Brownow ---------Date with Dilling Bar Mar I Har Dillion Har Persona a · MURANMENOLONY LINE PLET BOOM TO .: I Killinger THE CONTRACTOR The state of the state 11.11.1 ----Land P. Dr. Hander Br. ----Dirose to the second This I Be Filling Be -----E.C.M.COLUMN and the second second P Carton P Ba PHILI- Ba The CAS Search Service and the second second RUND the second s APPENDENT PROPERTY AND The The Mark- Ba STR FWE - - ----Manager-----Contraction of the -----2.11 V.V. 144. 144 Rider, 7 Ray Pillada- Ray of the local black in the shall we itter 7 Kas Partition Res PROPAGE S.F. ------Child Lothe Bally Through A DOWNER AND ---------mini bokon ber hann hann NEW FORM THE CALOR STORE. Phile- 7 file Public- file NAMES OF TAXABLE PARTY AND INCOME. the set of the set of the set of the - Margaret Letter Section -----172 CAM. No. i finit strategi MART STRATE MARTINE Rider William Restation Inc. and the second 100100 This same man to man. A STREET STREET, AND TRACK This 7 is min- is Billion ----the state states in The second second second 2. S. & K. C. 1936 ing it is that is · THE REAL PROPERTY AND The Plan Plan - In-STATUTE AND ADDRESS FOR -----Martin Property and Provide State ----F HIP LAND depend the later when Column Street Street of Street Contractory of the local data in the local data AN INVESTIGATION A Distance of the local distance of the I Internet and the second a man to the ----CARD DOT FOR MANY _____ I DOWNERS The rest of the later of P LINE and Lot of Concession 2 Warmen 100012-000 DOWNER · ALMONDON CONTRACTOR I Dilling room Party Party Party -----The station · Mic. ? In Plate In 115 This The How- to P STATUT PROPERTY OF A DESCRIPTION OF A DESCRIPTI Contraction in the Edit and an and a second Print lives on the same can see any Millionia West and an art PWS.dormore.com ---------+ Dir 7 in Pille In CONTRACTOR AND A DESCRIPTION OF Party of Table of Street, or other the last party of the last · Dir. · In Party in The P is state in THEFTA -5 J. (1,) (4) This I has person the A CARLES AND A CARLES 1.1.1.1.1.1 PROFESSION AND ADDRESS OF Purchase and state of the second I COLORED TO A COL Contract of the local division of the ik Jasta T Phi- 7 fler PHild- fler NUMBER OF STREET, STREET, ST. Contract of State of State of State and an and the second second WWWWWWWWWWWWWWWWWW ----Withow Withow are Han. all the second Thermony and ----A CONTRACTOR OF A CONTRACTOR O ----The second line of the line of the second line of t With the Party of the LABOR DE LOS -----Pair 7 ils Hilder Ils 2"1" PLOTO-0"1 PTA-001 PTA THE REPORT OF THE REPORT OF The second second second Thirty design and the - Filt 7. 8. Filler In. -----CONTRACTOR DURING A REAL PROPERTY AND ADDRESS OF THE A White comments in the Wall a sum or start Part of Store Parts Andreas and the second property of the state The West Concerns 10000 100 1 = = = F BEALER ST. P DIAL N BOARD the same as some or as an of the local division of the local divisiono ------ BEARDAN in an invest in success on other Statements of the statement of the state ----The second second ----- $\mathbf{r} = \mathbf{r}$ No. 1 1 1 1 1 1 Pater 7 Ber Hiller Ber BLOG SPREPORTAN-States with the party of ----I Hanney and some Barris Transmission of the second NO DOMESTICS Parallel and Reparation resolution (second NAME OF TAXABLE PARTY AND ADDRESS OF TAXABLE and the second second The last of the second **KEY SEARCH WORD: "BLEND"** nui- la Distanti WINCHS.W. CANADA STR. S BADA -----CONTRACTOR OF LP. ------ No. 7 In BAAD BARAN ____ And the second second second Provident California Internationale -----President and Party REAL PROPERTY. William Designation in the -· [ide_ ? its Piller its COMPANY CARACTER DATE AT This sum a -Philip State of Lot of CHILD IN THE PARTY OF 44 References to "PVC" THE COMPANY OF THE OWNER i BREAT state of the local state in the local state in the local ----Solution and the second second E ALTRADAY AND - Dic 7 th 2000- th ----T THE REAL PROPERTY AND The The Party in ---------1 Berner THEFT Party and in the second states Statement of the same and the same of the same ----L'HARARA TANÀ MANANA "In the lot of the second and the state of the second -----Depart Descores. --------P STATES PROCEEDING PRODUCTION BOD In -----F 200 1740 ------107.17 The second s -----The state is a second of the second second States and Filtr 7 in Feat- in I Billingeren. Water an owner to state The rest is set of -----BERGERING------Thilling FRAME TO A STATISTICS IN COMPANY I Manufacture Descences areas Partition and ____ ant, it manyster was supported ----a kata ka STATE OF A STREET Partition and an THE R. ----No The Mar In NAME OF TAXABLE ADDRESS OF TAXAB THE OWNER AND ADDRESS OF THE OWNER ADDRESS OWN F.I.F. ELTRE TRACES -----Phi- 7 the Philip- Re-EAST-BRANK AND States of Lot of T DELINE COM States in case of the local division in the 1堂 BLOWING BLOW FERRE STATES AND ADDRESS OF THE FERME the local difference of the second Station of the second state of the P THE LOL . PROTECTION OF THE OWNER OWNER OF THE OWNER BITTER CONTRACT OF AND Description of the local days of BETHEN THE COMPANY OF THE OWNER L. PHE. P. Person PRODUCT NAME AND ADDRESS OF ADDRESS OF TAXABLE PARTY. Letter-SPECIAL STREET The state of the second second ------FULL - Brandarount Contraction of the ----THE OWNER WHEN AND DRUTCH OF ____ 100000-----HADRON OF REAL OF -----C PLACE SWLC FILLER -----Cardware-Culture. _ -----Contraction . Contraction of the local division of the loc _____ E PERSON ----- Links walk arrows 1.00 Digital and the second Barner-FERMI ----PRE--) II III, II the state of the local sector of the 12 The- was read- as Enland. -----. COME AND ADDALARS The- 7 to 1980- to -----Bandharane. FM- 7 th PHH- th And the set in the ALV DEX LUCK CONTRACTOR OF The P is NUM- IS ----) = :== = NUMBER OF THE OWNER DOWN and the second second B/BAR STOCKED AND A DESCRIPTION OF A Reversion of the second STATES OF THE OWNER OF . Phi- 7 the Peter- the ----and all provide in sec. 1 1 III 1105. III ALC: NO. -----BLEDRICKPURMS-BUTCHING Purchase of the local division in the local C. FILLER THE REAL PROPERTY AND DESCRIPTION IE E -BUT DOLLAR AND DOLLAR AND Part. inter a FIRST ILG---107 ------THE REAL PROPERTY AND ADDRESS OF Philips IF Has PUBLISH Has -------------

A DESCRIPTION OF THE OWNER OWNER OF THE OWNER OWNE

NAME AND ADDRESS OF TAXABLE

and show the second second

The Party of Street, or other water, or

P 1014' L 1

Philippinesses____

RIGID PVC EXTRUSION PROFILE

CONTROL

0.2% KZ TPP

2x OUTPUT @ 85°F (47°C) LOWER TEMPERATURE

PROFILE TEMP. 360F

28 RPM

B UNITS/MIN.

PROFILE TEMP. 275F

43 RPM

17 UNITS/MIN.

<u>L5</u> ANSWER 155 OF 439 CA COPYRIGHT 2016 ACS on STN AN 163:386816 CA <u>Full-text</u> <<LOGINID::20160920>>

TI Polyvinyl chloridepolycarbonate alloy with good weathering resistance and antistatic property

	NT 1								
	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE				
PI PRAI	CN 104861378 CN 2014-10847633	A	20150826 20141229	CN 2014-10847633	20141229				
AB	The preser	nt ir	nventio	on provides p	olyvinyl				
	chloride (PVC)-polycarbonate alloy with								
	good weath	erir	ng resi	stance and					
	antistatic property, comprising the								
	following components by mass								
	percentages: PVC 45-55, polycarbonate								
	20-25, SMA 2-4, ACR 3-6, attapulgite 2-8, melamine cyanurate 4-7,								
	dioctyl phthalate	3-6, an	ntistatic a r 0.1-1, pe	gent 1-3, UV absorber : ntaerythritol stearate	1-2, calcium- 0.5-1, and				
	antioxidant 1010 (1,200, and weight	0.1-0.5 average	. The desc e mol. weig	ribed PVC has average on the of 50,000-120,000.	d.p. of 800-				

PVC 45-55, polycarbonate 20-25

PVC temperatures range from: 500°F (260°C) to 212°F (100°C); PC temperatures reduced from: 580°F (304°C) to 370°F (188°C);

5 ANSWER 155 OF 439 CA COPYRIGHT 2016 ACS on STN N 163:386816 CA <u>Full-text</u> <<LOGINID::20160920>>

TI Polyvinyl chloridepolycarbonate alloy with good weathering resistance and antistatic property

DA Vin Deihus Deen Den China

Lower Temps. Opens the Innovation Window to PVC Copolymerization

PVC 45-55, polycarbonate 20-25

PVC temperatures range from: 500°F (260°C) to 212°F (100°C); PC temperatures reduced from: 580°F (304°C) to 370°F (188°C);

<u>L5</u> ANSWER 152 OF 439 CA COPYRIGHT 2016 ACS on STN AN 163:386826 CA <u>Full-text</u> <<LOGINID::20160920>>

TI Flame-retardant anti-aging polyvinyl chloride-

polyethylene blended composite plastic PA Yin, Peihua, Peop. Rep. China So Faming Zhuanli Shenqing, 5pp. INVENTED IN 2014

LA Chinese FAN.CNT 1

IT

	PATENT NO.		KIND	DATE	APPLICATION NO.	DATE
PI	CN	104861353	A	20150826	CN 2014-10838685	20141230
PRAI	CN	2014-10838685		20141230		

AB The title composite plastic comprises (by mass%): PVC 35-50, polyethylene 20-25, GMA-St-AN 2-4, SEBS 4-6, ACR 2-4, nano aluminum hydroxide 3-8, melamine cyanurate 4-7, zinc borate 1-4, light stabilizer 622 1-2, light stabilizer 944 1-2, dioctyl phthalate 5-8, calcium-zinc composite

CH₃

 $CH_3 - CH - O - Ti + O - C - C_{17}H_{35}$

stabilizer 0.5-1.5, calcium stearate 0.5-1 iso-Pr triisostearoyl titanate 0.1-0.5, and antioxidant 1010 0.1-0.5.

invention combines the resp. original advantages of PVC and polyethylene, and has excellent flame retardancy, anti-aging property, thermal stability and processability, and good mech. strength. <u>61417-49-0</u>, Iso-propyl triisostearoyl titanate, KR TTS

RL: MOA (Modifier or additive use); USES (Uses) (flame-retardant anti-aging polyvinyl chloride-polyethylene blended composite plastic)

PVC can be: Polymerized, Co-Polymerized, Re-Polymerized or <u>De-Polymerized</u>

📧 Gauge Copyright ©2021 Kenrice Petrochemicals, Inc. ®. All rights reserved. The Kenrich molecule, Kenrich® name, and all Kenrich Petrochemicals, Inc. S® products denoted with a 🖲 or 🍽 are trademarks of Kenrich Petrochemicals, Inc. ®.

PVC can be: Polymerized, Co-Polymerized, Re-Polymerized or De-Polymerized

PVC can be: Polymerized, Co-Polymerized, Re-Polymerized or De-Polymerized

💷 Copyright ©2021 Kenrice Petrochemicals, Inc.®. All rights reserved. The Kenrich molecule, Kenrich® name, and all Kenrich Petrochemicals, Inc.'s® products denoted with a 🛚 or 🛚 are trademarks of Kenrich Petrochemicals, Inc. ®.

PVC can be: Polymerized, Co-Polymerized, Re-Polymerized or De-Polymerized

📱 Copyright ©2021 Kenrice Petrochemicals, Inc.®. All rights reserved. The Kenrich molecule, Kenrich® name, and all Kenrich Petrochemicals, Inc.'s® products denoted with a ® or ™ are trademarks of Kenrich Petrochemicals, Inc. ®.

Incompatibility PP & PET & PE

There are THREE Types of Compatibilizers:

- 1. Bi-Polar Thermoplastics: Links two dissimilar polymers. Works for PIR.
- 2. Maleated PP /Polymers:
- Couples Addition polymers.
- Does not couple fillers.
- Often, depolymerizes Condensation polymers.
- 3. Ti/Zr Coupling/Catalyst: Synergistic with 1. & 2. Catalyzes all polymers/Couples all inorganic & organic fillers, pigments, additives, etc.

Incompatibility PP & PET & PE

The effect of 1.5% Ken-React® CAPS® KPR® 12/LV on Brabender melt compounded PP/PET/PE Recycle Plastics @ 9% lower temperatures. Larger batches later extruded.

Materials obtained from post-<u>industrial waste</u> <u>streams</u>:

- 1. LLDPE is an Addition polymer.
- 2. PP is an Addition polymer.
- 3. PET is a Condensation polymer.

Incompatibility PP & PET & PE

The effect of 1.5% Ken-React® CAPS® KPR® 12/LV on Brabender melt compounded PP/PET/PE Recycle Plastics @ 9% lower temperatures. Larger batches later extruded.

LLDPE

Materials obtained from post-<u>industrial waste</u> <u>streams</u>:

- 1. LLDPE from a fractional melt film,
- 2. PP Copolymer from mixed 20-35 MFI injection molded caps,
- 3. PET from thermoformed clamshell food packaging.

📧 GEARENCE Copyright ©2020 Kenrich Petrochemicals, Inc.®. All rights reserved. The Kenrich molecule, Kenrich® name, and all Kenrich Petrochemicals, Inc.'s® products denoted with a ® or 11 are trademarks of Kenrich Petrochemicals, Inc. ®.

Material ground into 1/4 – 1/2" flakes and melt compounded into pellets for IM using a 30:1 L/D - 20 mm single screw extruder.

Incompatibility PP & PET & PE

Polymer Specialties International Ltd.

175 Deerfield Road,

Newmarket, Ontario, L3Y 2L8 Cell: (905) 717-3723 E-mail: <u>bryon.wolff@psi-cda.com</u>

University of Waterloo Chemical Engineering Department. The effect of 1.5% Ken-React® CAPS® KPR® 12/LV on Brabender melt compounded PP/PET/PE Recycle Plastics @ 9% lower temperatures. Larger batches later extruded.

Materials obtained from post-<u>industrial waste</u> <u>streams</u>:

- 1. LLDPE from a fractional melt film,
- 2. PP Copolymer from mixed 20-35 MFI injection molded caps,
- 3. PET from thermoformed clamshell food packaging.

Copyright ©2020 Kenrich Petrochemicals, Inc.®. All rights reserved. The Kenrich molecule, Kenrich® name, and all Kenrich Petrochemicals, Inc.'s® products denoted with a ® or 11 are trademarks of Kenrich Petrochemicals, Inc. ®.

Brabender Plasticorder Blends of Three Recycled Polymers: PP/PET/PE

Incompatible PP/PET/PE—

No Additive

Compatibilized PP/PET/PE—

1.5% Ken-React[®] CAPS[®] KPR[®] 12/LV Pellets

EX SALARCER Copyright ©2021 Kenrich Petrochemicals, Inc.®. All rights reserved. The Kenrich molecule, Kenrich® name, and all Kenrich Petrochemicals, Inc.'s® products denoted with a ® or 1^M are trademarks of Kenrich Petrochemicals, Inc. ®

Compatibilization of Addition/Condensation Polymers & Fillers – Lower Temps.

The PHYSICS of MIXING is critical to proper use of KPR® Titanium and Aluminum Additive Chemistry

Compatibilization of Addition/Condensation Polymers – Lower Temps.

The PHYSICS of MIXING is critical to proper use of KPR® Titanium and Aluminum Additive Chemistry

Lower Process Temps. to Make Titanate Nanotechnogy Work

Specific Energy Input = Lower Temps.; Increase rpm's; Increase Back Pressure

Compatibilization of Addition & Condensation Polymers LOWERING THE PROCESS TEMPERATURE FOR REACTIVE COMPOUNDING SHEAR IS CRITICAL

From: Bryon Wolff [mailto:bryon.wolff@psi-cda.com] To: Salvatore J. Monte <u>sjmonte@4kenrich.com</u> Subject: Re: 2015 Global Plastics Summit

University of Waterloo Chemical Engineering Dept.

Good afternoon Sal Below I've written a response to each of your questions. Should you require additional information etc. please don't hesitate to come back to me. Best Regards Polymer Specialties International Ltd.

Bryon Wolff Chief Technology Officer Polymer Specialties International Ltd. 175 Deerfield Road, Newmarket, Ontario, L3Y 2L8 Cell: (905) 717-3723 E-mail: bryon.wolff@psi-cda.com

In your opinion, does the 10% drop in temperature from 320°F to 290°F indicate clearly the importance of reactive compounding shear?

The surface of the extrudate exiting the die became significantly smoother. Upon further analysis with SEM and Izod, it was clear that the increasing the shear dramatically improved the dispersion and physical properties of the compound.

Compatibilization of Addition & Condensation Polymers SEM LOWERING THE PROCESS TEMPERATURE FOR **Injection Molded REACTIVE COMPOUNDING SHEAR IS CRITICAL**

PET from thermoformed clamshell food packaging. 3.

CONCLUSION

We have shown In Situ Macromolecule Titanate/AI (KPR®) Coupling & Catalysis is a significant strategic approach to reach VINYL RECYCLING sustainability goals.

Compatibilization of Addition & Condensation Polymers

Brabender Plasticorder Blends of Three Recycled Polymers: PP/PET/PE

📧 🚛 Copyright ©2021 Kenrich Petrochemicals, Inc.®. All rights reserved. The Kenrich molecule, Kenrich® name, and all Kenrich Petrochemicals, Inc.'s® products denoted with a 🖲 or 🍽 are trademarks of Kenrich Petrochemicals, Inc. 🖲

sjmonte@4kenrich.com

https://4kenrich.com/technical-information/

www.4kenrich.com

www.4kenrich.com